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Abstract 
This report describes the results of a Laboratory-Directed Research and Development 
project on techniques for pattern discovery in discrete event time series data. In this 
project, we explored two different aspects of the pattern matching/discovery problem. 
The first aspect studied was the use of Dynamic Time Warping for pattern matching in 
continuous data. In essence, DTW is a technique for aligning time series along the time 
axis to optimize the similarity measure.  The second aspect studied was techniques for 
discovering patterns in discrete event data. We developed a pattern discovery tool based 
on adaptations of the A-priori and GSP (Generalized Sequential Pattern mining) 
algorithms. We then used the tool on three different application areas – unattended 
monitoring system data from a storage magazine, computer network intrusion detection, 
and analysis of robot training data.  
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1 Introduction 
This report describes the results of a Laboratory-Directed Research and Development 
project which explored techniques for pattern discovery in discrete event time series data. 
The original motivation for the project was based on observed challenges in analyzing 
data from network-based sensor-driven monitoring systems. An example of such a 
system is one of the unattended monitoring systems fielded by the International Security 
Programs Center to monitor the status of high value assets and processes, particularly 
with respect to international nuclear material safeguards, nonproliferation, and 
transparency.  In these applications, the purpose of the monitoring system may include 
detecting intrusion into a secured area, verification that known processes are occurring as 
expected, and detection of diversion of nuclear material.  Another example of such a 
system is a network intrusion detection system used to monitor computer network 
communication traffic and user sessions.  
 
Analysis of data from such systems requires identifying and classifying patterns in the 
sensor data and interpreting them in terms of the expected activities or allowed activities. 
A key issue from an operational perspective is that it is not feasible to have a human 
perform all of the analysis.  A simple approach to automating the analysis is to identify 
patterns, classify the patterns as normal (or allowed, expected, etc.) and abnormal (or 
suspicious, unauthorized, etc.), and use pattern-matching algorithms to identify and 
classify observed behavior.  Most network intrusion detection tools follow this approach. 
A finite state-machine based pattern detection approach has been successfully 
implemented as the Knowledge Generation software tool and demonstrated in nuclear 
material safeguards and transparency applications. [1][2][3] However, pattern detection 
tools generally cannot discover new, unknown patterns in the data. New tools are needed 
that are capable of pattern discovery – that is the identification of new patterns in the data 
whether those patterns represent normal activity or whether they are indicative of 
unauthorized, anomalous activities.  
 
Data mining is a process for finding useful information from large data sets that involves 
a collection of algorithms and techniques for finding and categorizing patterns in data. 
[4][5] The techniques fall into several broad categories including rule discovery, the 
testing of patterns hypothesized by a user; rule induction, the automated extraction of 
patterns in the data; regression, the detection of patterns in continuous data; deviation 
detection, the detection of deviations from established or normal behavior; and 
classification, the categorization of data records or patterns in the data. [4] In essence, the 
pattern discovery problem we addressed in this LDRD is a data mining problem. While 
each of the categories listed above is important for automating analysis from unattended 
monitoring systems, we focused our efforts primarily on rule induction and rule 
discovery techniques.   
 
In common commercial applications, data mining is directed toward discovering 
associations between attributes of an object and selecting associations which are useful in 
predicting some desirable or undesirable outcome. The “dimensionality” of the data 
refers to how many attributes (fields) are available for each object (record). Sensor data 
differ from commercial enterprise data in three significant ways:  
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1. The data are of low-dimensionality. Sensor data generally consist of the time of 
the event and a value for the event. While spectral and hyperspectral data can 
have high dimensionality, simpler sensors (i.e., temperature, voltage, etc.) do not. 

2. Some data may be continuous rather than discrete. Data mining techniques 
generally apply to discrete data, so methods for discretizing the continuous data 
are needed. One approach is to bin the data. Another approach is to segment the 
data and flag the segment end-points as potential key events. We favor the latter 
approach since it matches the discrete event nature of the other sensors in the 
monitoring systems. 

3. The time ordering of the data is significant. The pattern discovery techniques will 
need to extract information from data based not only on its order, but also based 
on the delay between events – considering both time-out as well as time-in events.   

 
As a result of these differences, commercial data mining applications are not suited for 
finding sequence-based patterns in time-ordered data, although commercial applications 
can be useful for characterizing normal behavior based on time of day or day of week.  
 
After initial exploration of the capabilities of commercial systems, this LDRD focused on 
developing algorithms for discovering sequence-based patterns. The test data we had 
contained data from both discrete sensors (e.g., door switches or breakbeams) and analog 
sensors reporting continuous-valued quantities (e.g., radiation levels or temperature). The 
different types of data (continuous vs. discrete) require different algorithms. As a result, 
there were two major thrusts to the LDRD. The first aspect studied was the use of 
Dynamic Time Warping (DTW) [6][7][8][9][10] for pattern matching in continuous data. 
In essence, DTW is a technique for aligning time series along the time axis to optimize 
the similarity measure.  The second problem was the discovery of patterns in discrete 
event data. We developed a Pattern Discovery Tool based on adaptations of the A-priori 
[11] and GSP (Generalized Sequential Pattern mining) [12] algorithms. We then used the 
tool on three different application areas – unattended monitoring system data from a 
storage magazine, network intrusion detection, and analysis of robot training data.  
 
The report is organized as follows: Chapter 2 describes other data mining work, 
particularly in the DOE complex. Chapter 3 describes the DTW algorithm and its 
application to pattern matching with continuous data. It also compares the DTW 
algorithm to another technique for describing time series data, Hidden Markov Models. 
Chapter 4 describes the general approach to pattern discovery in sequential data while 
Chapter 5 describes the Pattern Discovery tool and its applications. 
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2 Related Work 
In this section, we examine several relevant major efforts in data mining at three DOE 
laboratories in the nuclear weapons complex (NWC). 
 
High-resolution simulations, such as those used in the ASCI program, can generate 
terabytes of scientific data, which is much too voluminous for a human to analyze by 
hand.  Several efforts within ASCI seek to explore data mining techniques to sift through 
the data and isolate the smaller, more manageable portions of interest for detailed 
analysis.  Tools from these efforts analyze the data by identifying patterns, either 
automatically, or through interaction with the user.  A pattern in the ASCI context can be 
anything from a sequence of “interesting” regions in mesh data to statistical similarities 
between characteristics of regions of interest to recurring relations among arbitrarily 
complex objects in the domain.  We describe three of these data mining efforts below, 
namely Pattern Discovery in Scientific Data, AVATAR, and Feature Characterization in 
Scientific Datasets.  In addition, below we describe related efforts in computer network 
intrusion detection, where it is desirable to discover anomalous patterns in network 
traffic, and we describe the VxInsight effort which graphically displays data in a 
geometric vicinity based on similarity metrics. 

2.1 Pattern Discovery in Scientific Data 
Karypis and Kumar [13] are developing clustering algorithms and pattern discovery 
approaches to operate on turbulent fluid flow and structural mechanics simulations.  In 
their approach, higher order objects that correspond to interesting structures (such as 
vortices in flow simulation data) obtained from feature extraction are analyzed by the 
clustering and pattern discovery algorithms. The results of this analysis provide the user 
with high- level information that will assist in the processing and understanding of the key 
relationships in the simulation data.  Of particular relevance to this LDRD project is the 
work in the discovery of frequent patterns. 

2.1.1 Hierarchical Clustering   

Clustering scientific data can be challenging due to the large volume of high-dimensional 
data.  In addition, existing clustering algorithms are designed to use fixed metrics that 
limit their applicability to scientific datasets.  For example, the K-means algorithm uses a 
fixed distance metric to cluster data around centroids.  Such a metric is inadequate if one 
needs to cluster higher-order features such as vortices or cracks.  To address this problem, 
recent work in hierarchical agglomerative clustering can be applied using dynamic 
metrics to measure the similarity between clusters.  The use of dynamic metrics facilitates 
the discovery of natural and homogenous clusters of high- level objects in scientific data.  
A drawback of hierarchical agglomerative clustering is that the runtime tends to be O(n2), 
which can be unacceptable given large scientific datasets.  This work investigates an 
approach based on data summarization [14] to limit the volume of data to be clustered 
while still yielding high-quality clusters, leading to a scalable solution. 
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2.1.2 Pattern Discovery   
The discovery of frequent (or infrequent) patterns among objects in the dataset is an 
important problem in data mining.  Karypis and Kumar[13] define a pattern as a recurring 
relation among objects, with an importance determined by how frequently it occurs 
(support level) and how indicative its occurrence is of a certain outcome (confidence 
level).  Patterns that have a high confidence level are very important because they can 
provide an accurate prediction.  The support of a pattern is also important, as patterns that 
do not occur frequently may be spurious.  On the other hand, Karypis and Kumar[13] 
note that sometimes infrequent patterns can be very important, and the challenge is to 
distinguish infrequent important patterns from other spurious patterns.  This is identical 
to one of the problems faced by this LDRD project – the isolation of important infrequent 
event patterns that indicate an anomaly in system operation or unauthorized bunker 
activity.  In this work, Karypis and Kumar propose to build on their previous work in 
temporal patterns [15], which uses a directed acyclic graph to specify allowed 
relationships among the objects in patterns, facilitating the discovery of arbitrarily 
complex temporal patterns.  They also plan to extend this framework to include spatial 
predicates to find spatio-temporal patterns. 

2.2 AVATAR 
The goal of the AVATAR project [16] is to capture what the user thinks are interesting 
patterns in the dataset during the visualization of scientific simulation results, and use this 
information to automatically point the user to similar interesting data in other regions or 
in another dataset.  The approach can be broken into three primary steps:  1) User-driven 
pattern discovery through a modified version of the MUSTAFA visualization tool, 2) 
Learning, and 3) Pattern detection.  User-driven pattern discovery is a key concept 
embodied in the Sequence Pattern Discovery Tool developed in this LDRD project. 

2.2.1 User-Driven Pattern Discovery  
 To capture interesting patterns in the data, the MUSTAFA visualization tool was 
modified to allow the user to draw a rectangle over regions in the current view and label 
the underlying mesh nodes in these regions as Very Interesting, Interesting, Probably 
Interesting, or Not Interesting.  Unlabeled portions of the data were subsequently labeled 
as Unseen low or Unknown.  The labeled data containing the user-discovered patterns is 
saved to a file, where each mesh node contains the original fields that hold the physics 
variables etc., in addition to a new field that holds the label. 
 
 
 
 
 
 
 
 
 

Figure 1: Capturing user-discovered patterns  

 

{x11,x12,x13,x14,x15}: Interesting  
… 
{x91,x92,x93,x94,x95}: Interesting  

User-Discovered Patterns  
Capture 
to flat file  

User Selects Region 
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2.2.2 Learning   
The learning process consists of inducing a decision tree on the user-discovered patterns.  
A parallel approach is needed since the user-discovered patterns can consist of very large 
amounts of data.  The challenge is to build a parallel decision tree inducer that does not 
decrease in accuracy as the dataset scales in size.  The simple, yet effective solution 
developed was to partition the data into N disjoint (or overlapping) subsets, and place one 
subset on each of the N processors of the parallel machine.  Each processor then invokes 
the C4.5v8 algorithm [17][18] to construct a decision tree independently of the other 
processors.  This eliminates the need for inter-processor communication during tree 
induction.  Each decision tree is saved and distributed to the other N-1 processors for 
pattern detection. 

2.2.3 Pattern Detection   
After tree induction, each processor has all N induced decision trees.  To detect patterns 
in new data (i.e. to classify the data), it is partitioned among the available processors, and 
each processor runs its portion of the data through all of the decision trees and uses a 
majority vote of the results to determine the final classification of each piece of data.  
This simple, scalable process was shown to have similar accuracy to the serial version of 
the algorithm.  A weighted voting scheme was also considered; however, results did not 
show an improved accuracy over the simpler majority voting scheme.  Currently, the 
AVATAR system runs on ASCI Red and ASCI Blue utilizing MUSTAFA and Exodus 
datasets.  A large example, consisting of 800,000 training examples on each of 64 
processing nodes (51,200,200 examples) was completed on ASCI Red in 2.5 hours.  The 
key barrier to scalability of the parallel classifier is the limited parallel I/O capability of 
ASCI Red. 

2.3 Feature Characterization in Scientific Datasets 
Like the Pattern Discovery in Scientific Data project, the FCDMF (Feature 
Characterization using Data Models and Formats) project [19] seeks to develop methods 
to mine higher- level objects from scientific simulation results.  A hierarchical feature 
ontology is used that contains a base layer of objects that violate basic continuity and 
smoothness assumptions, and layers of higher-order objects that violate laws of specific 
domains.  This ontology is used to mathematically describe and characterize features 
automatically, so the analyst can focus on the important regions that require close study.  
This effort relates to our LDRD project in that it develops a data analysis tool, much like 
the developed Sequence Pattern Discovery Tool to aid the user in discovering interesting 
patterns by performing automatic and user-directed computations on the data. 

2.3.1 Data Format   
When constructing a general-purpose tool, it is important for the tool to be able to read 
and write data in common formats.  The FCDMF project addressed this issue by 
constructing the tool around the SAF [20] data format.  SAF provides for the flexible 
representation of a wide variety of scientific data by incorporating metadata (or data 
about data) as part of the format.  At any level of abstraction, computed features can be 
stored along with the raw mesh data as part of the metadata.  The SAF libraries provide 
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for the automatic translation between different types of data to facilitate its use by various 
different tools. 

2.3.2 Features as Patterns   
The base ontology which forms the core of the feature set used by FCDMF consists of 
features, or computable patterns in the scientific data, that express the violation of the 
continuity and smoothness assumptions that are intrinsic to the laws of physics and 
numerical simulation.  These base features include cracks, spikes, tears, wrinkles, etc.  
Higher levels of the feature ontology, which are constructed from component features in 
the base level, include features that express the violation of higher-level physical laws, 
such as the contact problem, where normal forces between two surfaces in contact deviate 
from being equal and opposite. 
 
This hierarchical pattern relationship is not unlike the construction of larger patterns from 
subsequences of tokens in the Pattern Discovery Tool.  In both cases, the interesting 
patterns are those that do not occur frequently.  For example, the Pattern Discovery Tool 
may be used to isolate an infrequent token sequence indicating an unauthorized access 
event, and the FCDMF algorithms can be used to identify single deviations in large sets 
of scientific data, such as a spike in temperature at a hot point. 

2.3.3 Framework Algorithms  
 To compute the various features in the feature ontology, a set of algorithms were 
developed as feature building blocks: 
 

- Normals(): takes a SAF dataset and computes the unit- length normal vector to 
each element of the mesh. 

- Topological-neighbors(): takes a SAF dataset and an individual mesh element, m, 
and returns a list of mesh elements that share an edge or vertex with m. 

- Geometric-neighbors(): takes a SAF dataset, and individual mesh element, m, and 
a radius, r, and returns a list of mesh elements whose vertices are within the 
Euclidean distance of r from m. 

- Statistics(): takes a SAF dataset and a specification of one variable (either a mesh 
coordinate or a physics variable), and computes the maximum, minimum, mean, 
and standard deviation of its values. 

- Displacements(): takes a SAF dataset and finds all topologically neighboring pairs 
of vertices, measures the xyz distance between them, and reports the maximum, 
minimum, mean, and standard deviation of those distances. 

 
In addition to these algorithms, other fundamental vector calculus computations are 
provided in the FCDMF framework.  The Pattern Discovery Tool also contains a set of 
algorithms to construct, compare, and filter patterns, either automatically, or under user 
control.  These are manifested in the various menus and pop-ups in the user interface. 

2.4 VxInsight 
VxInsight is a knowledge management and visualization tool for discovering 
relationships within large databases [21].  Rather than invoking standard clustering 
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algorithms and displaying the data to the user, VxInsight instead computes a similarity 
metric on the data and displays data points for each datum, where data appear 
geometrically closer to each other in the visual display as their similarity value increases.  
The underlying concept is to use the human’s exceptional ability to visualize patterns, 
relationships, trends, and anomalies.  Data is displayed as points on a 3D landscape.  
Mountains in the landscape indicate data that are similar to each other, and the height of 
the mountain indicates the density of the data in that region.  Intuitively, the user can 
navigate the data landscape much like one would navigate a 3D map of a geographical 
region.  VxInsight [21] claims to improve on similar visualization tools, such as SGI’s 
MineSet [22], by providing dynamic peak labels to provide navigational guidance 
through the data landscape.  The Pattern Discovery Tool is similar to VxInsight in the 
context of providing user-directed pattern discovery. 
 
VxInsight allows the user to navigate through the data and visually identify and explore 
patterns in the data through color or topology, while the Pattern Discovery Tool 
developed in this LDRD presents a preliminary set of patterns to the user which can be 
filtered, merged, and extended through interaction with the tool to isolate interesting 
patterns in a user-determined slice of the data. 

2.4.1 Computing Object Similarity   
The specific function used to determine similarity between data objects in VxInsight is 
dependent upon the domain of the data.  For example, the metric could be based on 
common keywords in documents, identical vocabulary within documents, citation links 
between scientific papers or patents, direct links in web documents, financial transaction 
links between corporations, or membership in common organizations among individuals 
[21]. The general function maps object pairs to non-negative real numbers.  The greater 
the similarity between the two objects, the larger the number returned by the similarity 
function. 
 
Similarly, patterns identified in the Pattern Discovery Tool are compared based on the 
similarity of the representative token sequence string.  Three component metrics are used 
to compute the similarity value of the two strings based on relative character position, the 
number of missing characters, and the difference in length of the strings.  These metrics 
are normalized and combined to generate an overall similarity metric whose range is 
from 0.0 to 1.0.  The higher the normalized value, the more similar the strings, and 
therefore, the more similar the token sequence patterns.  So both VxInsight and the 
Pattern Discovery Tool quantify similarity by mapping it to non-negative real numbers. 

2.4.2 Navigating Science  
 The primary application and the chief motivation for the development of VxInsight is to 
determine what scientific efforts to support with research funding to yield the greatest 
impact [22][23].  To help do this, VxInsight was used on a database of scientific papers 
where initial similarity was based on citation content.  VxInsight was used to determine 
where a particular body of work originated, how it has evolved in the past, and the trends 
for future research.  VxInsight has also been applied to study nuclear proliferation [24].  
The structure of nuclear technology literature was first visualized, then used with text 
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analysis tools to determine similarities between papers and public sources discussing 
nuclear technologies.  Analysts were then able to track down potentially sensitive 
information using VxInsight as a form of intelligence gathering tool.  Other applications 
of VxInsight include: 1) exploring citation indices to identify similar efforts in the 
laboratories and in industry and point to areas of possible collaboration, 2) detecting 
Medicaid fraud, 3) counter-terrorism intelligence, and 4) characterizing the nature of 
patent citations. 

2.4.3 Moving Forward 
From the above discussion of related work at three DOE laboratories in the NWC, we 
note that the work in this project is similar to and applicable to many of the related works, 
but yet is distinct in the problems addressed in pattern discovery.  In particular, we 
address the problem of how to automatically discover patterns in event sequence data. 
 
In the next section, we discuss our initial investigation of two similarity mechanisms, 
Dynamic Time Warping, and Hidden Markov Models, which were explored early in this 
project as possible solution approaches. 
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3 Dynamic Time Warping and Hidden 
Markov Models 

 
As noted in the introduction, the test data we had was a mixture of measurements of 
continuous-valued quantities and discrete events. In order to automate analysis of this 
data, the two types of data must first be placed on an equal footing. The approach taken 
in the Knowledge Generation software is to extract key features from the measurements 
of continuous-valued quantities that can be mapped to significant events in the monitored 
processes. The Knowledge Generation software suite includes a rule editor that allows a 
user to define a set of rules for extracting events from the continuous-valued data. 
However, our experience with test data showed that it can be difficult to write a robust set 
of rules for feature extraction. In some applications, the time allowed certain steps in a 
monitored process varied greatly. In addition, radiation level measurements were 
sensitive to geometry as well as history of the radioactive material. Our motivation for 
exploring the pattern discovery and matching problem in the continuous-valued data was 
to develop algorithms to aid in writing robust feature extraction rules. 
 
A literature search on pattern matching in continuous-valued data turned up significant 
features in the problem we were trying to address.  Whereas the available literature 
concentrated on handling large quantities of evenly spaced data, we had sparse, irregular 
data.  Furthermore, as described above, our pattern-matching problem is complicated by 
the fact that we would like to allow the patterns to be able to stretch in both the time 
dimension and in the dependent variable dimension.  In addition to pattern matching, we 
also aimed to discover new, yet unknown patterns in time series data.  Two approaches 
for measuring similarity were identified as likely candidates: Dynamic Time Warping 
(DTW) and Hidden Markov Models. The former looked particularly interesting at the 
outset because some of the papers described segmenting the data in order to reduce 
computation time on large data sets. Segmentation of the data could be a step toward 
feature extraction. 
 
Both algorithms are described in detail below, along with their respective advantages and 
disadvantages. Although the DTW approach looked most promising, in the end, we had 
insufficient data to make much progress on this thrust. 

3.1 Dynamic Time Warping 
DTW is defined in [10] by the following: 
 

Given two time series, O1 and O2, DTW finds the warping of the time dimension  
in O1 that minimizes the difference between the two series. 
 

In essence, DTW is a technique for aligning time series along the time axis for a better 
similarity measure (see Figure 2).  As humans, we can see that the two sequences have an 
overall similar shape, but they are not aligned along the time axis.  In Figure 2(A), the 
similarity measure between the two sequences is based on Euclidean measure, which 
assumes that the ith point in one sequence aligns with the ith point in the other sequence.  
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This produces a very pessimistic similarity measure.  On the other hand, DTW aligns the 
sequences in such a way as to minimize the distance between them.  This nonlinear 
alignment results in a more sophisticated distance measure as shown in Figure 2(B). 
 

 
Figure 2: Comparison of similarity measure based on Euclidean distance and DTW. 
(A) A similarity measure based on Euclidean distance (the ith point of one sequence 
is aligned with the ith point of the other sequence) produces a pessimistic similarity 
measure.  (B) DTW produces a better similarity measure. Figure taken from [9]. 

 
There are numerous papers on using DTW for time series data, including 
[6][7][8][9][10].  Berndt and Clifford [6] describe a DTW algorithm as follows: 
 
Assume we have two time series, S and T, where: 
 S = s1, s2, …, si, …, sn 
 T = t1, t2, …, t j, …, tm 
Note that the elements of the series are numbered according to where they occur in the 
series, not according to the time at which they occur.  Thus, si is the ith element of the 
series.  The starting points for each series (s0 and t0) are given to the algorithm.  Hence, S 
and T need not be aligned in the time axis, which allows for comparison of sequences 
that do not start at the same time. 
 
The first step is to arrange the sequences S and T to form an n-by-m grid, where each grid 
point, (i,j), corresponds to an alignment between elements si and tj.  We will use this grid 
to find the warping path, W, which aligns the elements of S and T such that the distance 
between them is minimized.  Let  W = w1, w2, …,wp , then the warping path is a sequence 
of grid points where wk = (i,j)k.  Figure 3 shows an example of a warping path where the 
point w5 indicates that si is aligned with tj.  Naturally, if there is no difference in the time 
axis between two time series, then W corresponds to points along the line i = j. 
 
 
 
 
 
 
 
 
 
 
 

 j 

Warping Path 

w5 

T 
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Figure 3: An example of a warping path. 

 
For detailed discussions regarding distance measures, normalization, and efficiency 
restrictions (including boundary conditions, warping windows, and other constraints), the 
interested reader is referred to [6].  Below we present an example which utilizes one 
instantiation of Berndt and Clifford’s DTW algorithm. 

3.1.1 An Example of DTW 
Consider the two time series, S and T, as shown in Figure 4.  The two series are similar.  
Note that S is offset from T along the time axis, and S is stretched vertically to be twice 
T.   The values along the y-axis have no particular meaning in this example. 

Figure 4: Example time series.  

 
From Berndt & Clifford’s algorithm, we establish an n-by-m grid with S on one axis and 
T on the other, as shown in Figure 5.  The number contained in each matrix element (i,j) 
represents the cumulative minimum distance between the ith point of S and the jth point of 
T.  This is calculated using the following equation: 
 
 ?(i,j) = d(i,j) + min[ ?(i-1, j), ?(i-1, j-1), ?(i, j-1) ] 
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where d(i,j) is the distance between i and j based on some distance measure.  Essentially, 
this equation is stating that the cumulative distance, ?(i,j), is the sum of the distance 
between i and j (specified by a point) and the minimum of the cumulative distances of all 
neighboring points.  In this example, the magnitude of the difference between the values 
is used as the distance measure, i.e., d(i,j) = | si – tj |.  For example, the calculation for the 
grid location (5,5), which calculates the cumulative distance between s5 and t5 follows: 
 

?(5,5)  = d(5,5) + min[ ?(4, 5), ?(4, 4), ?(5, 4) ] 
 = | 10 – 6 | + min[ 4, 4, 10 ] 
 = 4 + 4 
 = 8 

 
Upon completion of all calculations, the optimal warping path is found by backtracking 
through the grid and selecting the previous points with the lowest cumulative distance, as 
highlighted in Figure 5.  As you can see, DTW successfully generates what can be 

intuitively seen as the “correct” points of alignment. 
 

Figure 5: The n-by-m matrix with the warping path highlighted.  

3.1.2 Problems with DTW 
DTW has been successfully used in many domains, and it looked like a very promising 
way to compare a known pattern to a current data set in order to find if and how often it 
occurred.  However, DTW can produce unintuitive alignments where a single point in 
one time series is mapped onto a large subsection of the other time series.  In other 
instances, DTW fails to find obvious alignments because a peak, valley, plateau, or other 
feature of one series is slightly higher or lower than the corresponding feature in the other 
series (see Figure 6). 
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Figure 6: Example where DTW does not find the obvious, natural alignment.  Note 
that it failed to align the two central peaks.  Figure taken from [9]. 

 
Extensive discussion with Eamonn Keogh led to his idea is to perform DTW on the 
derivative of the time series instead of on the time series itself.  This is termed Derivative 
Dynamic Time Warping (DDTW).  Figure 7 compares the results of DTW and DDTW 
for time series comparisons on which DTW fails to find the optimal alignment. (A) and 
(C) show examples of alignments produced by DTW on a pair of time series, while (B) 
and (D) show examples of better alignments produced by DDTW on the same pairs of 
time series.  

 
 

 
Figure 7: Comparison of DTW and DDTW.  (A) and (C) show problematic 
alignments produced by DTW.  (B) and (D) are alignments produced by DDTW.  
Figures taken from [9]. 
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Despite the promise of this approach, time constraints prohibited the opportunity to 
explore the DDTW algorithm further on our data sets. 

3.2 Hidden Markov Models 
We briefly spent some time exploring Hidden Markov Models (HMMs) as another 
approach to solve our problem.  The following is only a brief overview of HMMs, but the 
interested reader is directed to a comprehensive tutorial about HMMs in [25]. 
 
An HMM consists of the following items: 

?? A set of N states, {1, …, N} 
?? An alphabet of output symbols, {a, …, z} 
?? A set of output probabilities, the probability that a particular symbol will be 

emitted while in a given state. 
?? A set of transition probabilities, the probability that the model will transition 

(or jump) from the given state to any other state at the next time step. 
?? An initial state probability distribution. 

 
At each time step, the HMM emits a symbol and either stays in the same state, or 
transitions to another state. 
 
Using this type of model, one can ask questions such as: What is the probability that a 
given HMM generated the sequence a,b,a,c?  Several transitions could have produced 
that sequence.  The Viterbi algorithm works out an approximation to the probability that 
a particular sequence of observations was generated by an HMM.  They are called 
Hidden Markov Models because the states that the system goes through are not known. 

3.2.1 Advantages and Disadvantages of HMMs  
The advantage of HMMs is that they are firmly grounded in probability.  There are 
principled and systematic procedures for estimating and training the model from labeled 
data as well as standard methods for detection, such as the Viterbi algorithm.  When the 
Viterbi algorithm is implemented, the resulting number has meaning - it is the probability 
that a time series was generated by an HMM along the most probable path through the 
HMM for that sequence.  Conversely, the number that comes out of the DTW algorithm 
is not as explainable, and its interpretation as a similarity measure is series-dependent. 
 
The disadvantage of HMMs is the same as the advantage: they are firmly grounded in 
probability.  HMMs are much more difficult to understand and implement.  Show a 
person a picture of two time series stretching and aligning along the time axis as in Figure 
2, and they will understand it.  Show that same person a page of probability figures and 
state transition diagrams for the corresponding HMM, and they will most likely not 
understand it.  In addition, it has been proven in [10] that HMMs and DTW are, in fact, 
optimizing the same criterion.  In his communication with the team, Tim Oates suggested 
that “if DTW does the job for you, the algorithm is much easier to implement and might 
be computationally cheaper than the corresponding HMM algorithms.”  This led us to 
pursue DTW in greater depth than HMMs. 
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3.3 Directions for Further Work 
Our initial investigation of Keogh’s DDTW algorithm indicates that this is a fruitful 
approach for further study.  Another interesting approach is that of Oates, Firoiu, and 
Cohen, who introduce and discuss the idea of combining DTW and HMMs in [10].  This 
work is expanded further in Oates’ dissertation, titled Grounding Knowledge in Sensors: 
Unsupervised Learning for Language and Planning.  
 
The next section discusses our approach and solutions to the pattern discovery problems 
we have addressed, in particular, pattern discovery in discrete event time-series data. 
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4 Pattern Discovery in Discrete Event Time 
Series Data 

4.1 Introduction 
The second major emphasis of the LDRD project was the problem of discovering patterns 
in discrete event time series data. We conservatively define a pattern as a subsequence 
that occurs more than once, although a more general definition for a pattern is 
subsequences that occur more frequently than some threshold. The approach developed in 
this section is equally applicable to discovering patterns in both event data from a single 
sensor and event data from many sensors. 
 
The basic approach is to tokenize the event data, representing the events as symbols in a 
sequence. In some cases, it is possible to use domain-specific knowledge to pre-process 
the sequence and reduce its size. Initially, patterns are “discovered” in the data by 
enumerating all subsequences that occur more than once.  We generally constrain the size 
of the subsequences to some user-defined value. In addition to frequency, other statistical 
measures can be computed to help a user decide which patterns are significant.  
 
One interesting problem with discrete event data from multiple sensors is that events 
from simultaneous activities can be intermingled, effectively disrupting the patterns or 
making them “noisy.” To handle this problem, we investigated the use of regular 
expressions and likeness measures to identify similar patterns. 

4.2 Event Tokenization 
The process of tokenization is straightforward and is dependent on the specific data. The 
raw data will be in a record form containing time and event information including the 
source of the event and the event type (e.g., door open, door close, break-beam broken, 
etc.). 
 
There are a number of different tokenization schemes that could be applied to the data. 
The simplest scheme we have used involves time flattening. In a time-flattened sequence 
we tokenize strictly on the event type in chronological order, ignoring both the duration 
times between events and the source of the data. Table 1 shows a portion of a simple 
time-flattened, event-type/token mapping. A portion of a tokenized sequence is shown 
below: 
 

ADEDFDEFDEFDEFDEFFDEDFFDE … 
 

Table 1: Bunker sensor event type tokens  

Event Description Token 
Door Open A 
Door Close B 
Motion Start C 
Occupied D 
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Image Trigger E 
Unoccupied F 
 
The monitoring system that provided much of the data studied during this project has a 
number of sensors that behave similarly and the observed activities resulted in 
considerable variability in relative timing of sensor events. The result of this simple time-
flattened tokenization approach was quite powerful in detecting generic patterns.  
 
More complicated tokenization schemes can be used to capture other dimensions of the 
event data. For example, the time duration between events may be important in deciding 
if two event sequences are similar. To capture this aspect of the problem, we 
experimented with a tokenization scheme in which the event types were tokenized with 
capital letters as shown above. The time between events was then represented with the 
lower case letters "a" through "j" where "a" represented 0 to 6 minutes since the previous 
event, and "b" 6 to 12 minutes and so forth. The letter "j" represented an hour or more 
between events. Using the same data as the previous example, the resulting sequence is 
shown below: 
 

AaDaEaDaFaDaEaFaDaEaFaDaEaFaDaEaFaFaDaEaDaFaFaDaE … 
 
The tokenization scheme can also be extended to handle complex objects. In fact, this is 
the approach used in the robot data analysis example in Section 5.8.3 
 
For the remainder of this report, the time-flattened token sequences will be used in order 
to keep the examples simple. 
 

4.3 Preprocessing the Sequence 
There are two ways the sequence may be pre-processed before beginning the pattern 
discovery process.  First, repeated tokens can be condensed into a single token, producing 
a form of event collapsing.  This is useful in cases in which certain event types repeat 
frequently (e.g., motion events from a motion sensor) and the user has decided that the 
number of repeated events is of little interest in identifying patterns. The token 
condensation process probably makes the most sense for time-flattened sequences. 
 
In addition to generating single symbol sequences, pre-processing can also generate 
"Event Words" which is the segmentation of the sequence based on a specified arbitrary 
time interval between event tokens. This approach is useful if the data captures several 
periods of sporadic activity. A relatively long time between events indicates a quiescent 
state for the monitored facility By dividing the data into event words, similarities among 
the periods of activity can be identified. The following sequences show examples of both 
condensed sequences (1) and event words with a maximum interval of 12 minutes (2): 
  
(1) ADEDFDEFDEFDEFDEFDEDFDE 
 
(2) JEJEJEJEJ 
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ADECFCDEDCEFFDEDCFBCEF 
J 
J 
J 
ADEDIFCDECFCDECBCECECEFF 
CECECEC 
CE 
CECE 
CECECECECE 

 

4.4 Pattern Discovery 
The primary purpose behind our efforts is to discover or mine for new and interesting 
patterns in the data. The method we pursued to find new patterns was to exhaustively 
search the symbol sequences for repeating subsequences. This method will produce 
volumes of subsequences depending on the length of the sequence and the distinct 
number of tokens (alphabet) that comprises the sequence. There are two problems 
associated with pattern discovery.  The first problem is the intensive nature of the 
exhaustive search required to find all patterns. The search is exponential to the size of the 
sequence. Second is the matter of deciding what subsequences or patterns are significant 
and merit further investigation or should be ignored. 
 
One of the data sets studied during the course of investigation in the LDRD was the 
Bunker Sensor data. This data set is essentially a list of events from various sensors 
located in storage bunkers. These events are recorded in a database as the events occur. 
These events are tokenized as symbols in a time-flattened sequence, which represents the 
list of events in chronological order. The goal of our study was to discover patterns that 
occur in the event list.  Further, the significant patterns may not be exact matches but 
reasonable approximations. The first step in our process is to discover patterns that are 
exact matches and are frequent. Our initial attempts employed a brute force method that 
enumerated every possible subsequence of every possible size. Once enumerated the list 
can be pruned to eliminate non-frequent patterns and patterns that are wholly contained in 
larger subsequences. This brute force approach is certainly capable of achieving the goal. 
It is however very intensive in both space and time requirements. The number of 
subsequences that must be examined is N(N-1)/2 where N is the length of the overall 
sequence. For a sequence with 1000 elements, 499,500 subsequences must be examined. 
It is reasonable to assume that the unsupervised search for unknown patterns will be 
intensive; however, there is a possibility of reducing the search space using pruning 
techniques. 

4.4.1 Related Efforts 
Agrawal and Srikant at the IBM Almaden Research Center introduced two important data 
mining algorithms known as A-priori [11] and GSP (Generalized Sequential Pattern 
mining) [30]. The basic concepts underlying these algorithms are as follows. If a 
subsequence of length k is determined to be frequent in a sequence and k is greater than 1, 
then any subsequence of length k - 1 from the previous subsequence must also be 



27 
 

frequent. A subsequence is deemed to be frequent if the count of occurrences of that 
subsequence in a larger sequence is greater than some predefined threshold. The 
discovery of new frequent patterns is done in a stepwise progression where new patterns 
of size k are found by building upon patterns of size k - 1. A-priori and GSP build the 
next level of new patterns by generating the set of possible next level sequences then 
scanning the database for their existence. 

4.4.2 Adaptations to A-priori and GSP 
We have developed an algorithm that incorporates the incremental creation of patterns 
using the frequency-pruning model from A-priori and GSP. This adaptation views the 
sequence as an indexed array and the subsequences are simply represented as an index 
pointer and a sequence length. Rather than generating all possible next level sequences 
and scanning for their existence, this algorithm takes the previous patterns of length k - 1 
and generates the next set of subsequences with length k.  The distinct subsequences are 
tallied to determine frequency by maintaining a hash table of the subsequences and their 
counts. For each new distinct pattern generated, the frequency is checked and those not 
meeting the frequency threshold are pruned from the list of new patterns.  After the list of 
new patterns is pruned the remaining patterns are added to the list of frequent patterns. 
 

4.4.3 Pattern Significance 
Our algorithm takes the pruning phase one step further by eliminating any patterns of 
length k – 1 from the list of frequent patterns if those patterns are wholly contained in the 
patterns of length k.  We accomplish this by comparing the frequency of a pattern with 
the frequency of the prefix of the pattern. If the frequency of the prefix matches the 
frequency of the pattern, then the prefix is wholly contained in the pattern and the prefix 
can be eliminated from the list of frequent patterns. This is also true for the suffix of the 
pattern. Consider the following example. 
 

 Table 2: Patterns for sequence ABXABZ 

Frequent 
Pattern 

Sequence 
Positions  

Frequency 

A 0, 3 2 
B 1, 4 2 
AB 0, 3 2 

 
The pattern AB starts with the token A, and since the frequency of both patterns (A and 
AB) is 2, it is clear that each occurrence of A is found in every occurrence of AB. A is 
wholly contained in AB, and in our algorithm, the prefix A can be eliminated from the 
list of frequent patterns. Note that the suffix B is also wholly contained in the pattern AB 
in this example and can also be eliminated. Had the example sequence been ABXABZA 
then the frequency of the token A would be 3 and A would not be eliminated. 
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4.4.4 Java Implementation 
While pursuing our investigation we built a Java implementation of this algorithm and 
incorporated it into the Pattern Discovery Tool.  Java's object orientation facilitates a 
highly flexible implementation. The fixed array was implemented as an array of objects, 
which means that the array elements can be a sequence of any object that represent an 
entry in the data set as needed without requiring a modification to the algorithm. The 
keys used for the hash table entries are simply array pointer objects that point to the first 
occurrence of a discovered pattern sequence in the array. The only requirements imposed 
on any new application object is that it must implement a Java class that represents a 
single entry in the data set, and provide methods to assess equivalence of the entries. 

4.4.5 Future Investigation in Sequence Pattern Discovery 
Much of our investigation centered on sequence mining; however, the temporal aspects 
of event sequences should also be considered. The study of time granularities and 
temporal reasoning [12] in conjunction with pattern discovery will enhance our ability to 
understand time sequences where events are not distributed in periodic patterns. 
 
There are a number of other individuals working on similar problems that came to light 
late in the LDRD cycle. Of particular interest are a number of papers presented at the 
Knowledge Discovery and Data mining conference in August 2001. Mannila and 
Salmenkivi [27] provided a study of event intensity in sequences. Liu, Hsu and Ma [28] 
propose a methodology to remove insignificant rules or sequences. Zheng, Kohavi and 
Mason [29] provided a well-researched comparative analysis of the leading association-
rule discovery algorithms. Han and Pei [30] presented two A-priori algorithm 
adaptations, the FreeSpan and PrefixSpan algorithms. These algorithms are logical 
performance extensions to A-priori and GSP. 
 

4.5 Post Processing and Analysis 
After the initial discovery of patterns, additional processing and analysis can take place to 
mine interesting information from the set of discovered frequent patterns. 

4.5.1 Elementary Patterns 
The premise that states that any pattern that is wholly contained within larger patterns is 
insignificant may or may not prove valid. The premise does prove useful in reducing the 
number of patterns to consider. However, the premise ignores the possibility that there 
are smaller or more elementary patterns that are building blocks of larger patterns. 
Running the pattern detection process and the reduction algorithms on a data set of 
approximately 2000 bunker events produced more than 350 patterns. Table 3 shows a 
sample of these patterns that contain a possible elementary pattern CE. This elementary 
pattern by itself was removed during the pattern discovery process, as were CECE, 
CECECE, CECECECE and CECECECECE. It appears that CE by itself has some 
significance because there are patterns where it occurs without repetition, but in 
conjunction with other tokens. It also appears however, that the patterns where CE 
repeats, such as CECE, are probably not significant by themselves. More work needs to 
be done to find a solution for this issue. 
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Table 3: A sample of patterns containing the possible elementary pattern CE 

Pattern Size Frequency 
ADEDCEC 7 2 
BCECE 5 3 
BCEF 4 3 
CBCECEC 7 2 
CDECE 5 2 
CEAC 4 2 
CECECDEC 8 2 
CECECEC 7 219 
CECECECEC 9 207 
CECECECECECE 12 198 
CECECEO 7 2 
CECECF 6 6 

 

4.5.2 Noise Avoidance 
Event collapsing techniques are a form of noise avoidance in that they remove 
uninteresting subsequences from consideration, but they only suppress events of a 
specific type. There is a need to find patterns that may have arbitrary "noise" or unrelated 
events included. Certainly, a studied approach to the analysis of the data and the removal 
of uninteresting events could reduce much of the noise. Such an approach may be 
feasible, but would be costly because of its need for human interaction. The need to 
detect similar patterns provides opportunities for future work. Some possible techniques 
include Regular Expressions [31] and other State Machine models especially if they 
incorporate the temporal aspects of the data. 
 
As an example, the following are a set of regular expressions that can be generated from 
a selected subsequence (pattern). These regular expressions can then be executed against 
the larger sequence to find other subsequences that match them. These new subsequences 
should be reasonably similar to the source pattern, but containing some noise. These 
expression derivations assume that the positions of the first and last tokens are 
significant. 
 
Two character pattern - i.e. AB: 
 Boundary Expression - "A.*?B" - find any sequence that starts with an A and 
ends with a B and has anything else in between. 
 
Three character pattern - i.e. ABC: 
 Boundary Expression - "A.*?C" 
 Interior-Permutation-with-Noise - "A.*?B.*?C" - find any sequence that starts 
with an A and ends with a C and has at least one B in between. 
 
Four or more character pattern - i.e. ABCD: 
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 Boundary Expression - "A.*?D" 
 Interior-Permutation-with-Noise Expression - 

"A.*?B.*?D", "A.*?C.*?D",  "A.*?B.*?C.*?D",   and "A.*?C.*?B.*?D" 
 

4.5.3 Statistical Measures 
Statistical analysis is the most promising tool for determining the significance of a 
discovered pattern. The designations that we use require some explanation. MF stands for 
measured frequency and MP for measured probability. MF is simply the count of 
occurrences of a given pattern in the sequence. MP is calculated as number of 
occurrences of a subsequence divided by the number of windows in the sequence where 
the subsequence could occur. We count windows as the number of possible positions in 
the sequence in which a given pattern could exist. For example if a sequence has 10 
positions and the target pattern is 5 tokens long then the number of windows is 6. The 
number of windows is calculated as Sequence_Size - Pattern_Size + 1. The letters A, B 
and C represent individual tokens found in the pattern regardless of the actual number of 
actual tokens. If the letters are shown individually, the implication is that the individual 
tokens in the pattern are considered individually. If the letters are contiguous then the 
tokens are used as a group in the calculation of the statistic. Each measure that we have 
explored will be described below. 
 
MP(A)MP(B)MP(C) 
This statistic is the measured probability of each individual token in the pattern 
multiplied by the measured probability of the other tokens in the pattern. It answers the 
question, if tokens are occurring randomly, what is the probability that they will occur 
together at any given window. In our data the MP("D") = 0.103071 as "D" occurred 198 
times within 1921 windows of size 1, and the MP("E") = 0.281624 as "E" occurred 541 
times, therefore the MP("D")MP("E") = 0.029027 
 
MF(MP(A)MP(B)MP(C)) 
This statistic measures the expected frequency of a set of tokens occurring together in the 
sequence, assuming random placement of the tokens. It is calculated by multiplying the 
MP(A)MP(B)MP(C) by the number of windows for the size of the given pattern. In our 
example MF(MP("D")MP("E")) = 55.73184 or we would expect to find the pattern 
around 56 times if D and E are placed randomly in the sequence. 
 
MP(ABC) 
This is the probability of a given pattern of any size occurring in any single window. It is 
calculated as the number of occurrences divided by the number of possible windows. In 
our example DE actually occurred 144 time in possible 1920 windows, thus MP("DE") = 
0.075 
 
MF(ABC) or Count 
This is simply the number of occurrences of a given pattern in the sequence. 
 
MP(A)MP(BC) 
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This statistic is most meaningful for patterns with more than two tokens. It provides the 
probability that the first token in the pattern is randomly placed with the remainder of the 
tokens. When compared with MP(ABC) it will provide a measure of correlation between 
the tokens in the pattern. 
 
MP(AB)MP(C) 
This statistic is used the same as MP(A)MP(BC) except it operates on the last token 
rather than the first. 
 
We also investigated the purely random probabilities and frequencies, RP(ABC), 
RF(ABC), RP(A) and RF(A). These metrics assume that all tokens are equally likely in 
the sequence. Therefore, these statistics may not be as useful as the measured 
probabilities and frequencies; they are highly dependant on the length of the sequence 
and the subsequence. 
 
These statistical measures can be used to answer specific questions about characteristics 
of the token sequence and the domain it encodes.  As an example, consider the following 
question:  Given the token pair AC in the current sequence, what is the likelihood that the 
token E comes next, i.e. ACE?  In the bunker domain from Table 1, this question 
translates to:  Given a Door Open event followed by a Motion Start event, what is the 
likelihood that the next event is an Image Trigger?  To answer this question, we divide 
the measured frequency of the ACE pattern by the measured frequency of the AC pattern: 
MF(ACE) / MF(AC).   If ACE occurred 21 times and AC occurred 32 times, then we 
could conclude that, in the scope of the current data set, any Image Trigger event 
immediately followed the Door Open – Motion Start event sequence occurs roughly 65% 
of the time. 

4.6 String Likeness Measures 
In the course of investigation of the problem of discovering patterns within symbol 
sequences, it has become desirable to discover patterns that are like others. Tools such as 
Regular Expressions can easily enumerate a list of patterns that are similar within a 
sequence or string of character tokens. Once the list has been compiled it is desirable to 
determine their likeness as compared to another string, perhaps a pattern that for some 
reason is considered to be significant. Below we discuss several likeness or fuzzy metrics 
that can be applied to this problem. 
 

4.6.1 Human Interpretation of Likeness 
Likeness or similarity between two character strings is highly ambiguous and subject to 
individual interpretation. A brief poll was taken, and from 13 responses the foregoing 
conclusion was drawn confirming intuition. The poll presented 20 pairs of uppercase 
character strings and asked the respondent to decide how similar the two strings were on 
a scale from 1 to 10, with 1 being the least similar and 10 being very much the same. No 
further direction was given as to what the scale meant, and the individuals were forced to 
decide what string likeness meant to them.  The actual poll is shown in the Appendix. 
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Despite the small sample size (13 responses) from the poll, several trends became 
apparent in the results. The first string pair ABCD and DEFG had responses that were 
fairly polar, either hardly alike or very similar. Those feeling that the pair was dissimilar 
indicated that any similarity based on size and a single common character was rather 
small. Those stating that the strings were similar did so because they observed a shared 
lexical sequencing pattern and that the pattern was significant enough to overshadow 
other dissimilarities. For this pair, responses ranged from 1 to 10 with 7 being the most 
frequent. 
 
The overall responses tended to exhibit inconsistency in judgment of similarity. In two 
cases the string ABCDE was paired with the same string, but with interspersed characters 
(noise). In one case the noise consisted of the single character X, AXBXCXDXEX; the 
other case used single random characters, AWBOCZDPE. People tended to favor the 
interspersed Xs over random characters as being more similar, even though there was one 
more noise-character, X, at the end. It could be conc luded that consistent noise is far less 
distracting than random noise when humans compare strings. 
 
Further analysis is better left to a psychological study. Certainly the poll was an 
extremely small sample, but interesting conclusions can still be drawn from the data. The 
purpose of the poll was to gain a rudimentary understanding of how humans interpret 
string similarity as compared to algorithmic methods. Our goal is not to mimic human 
behavior but rather to define a metric that can be interpreted usefully by humans when 
making decisions about the significance of patterns in a data set. 
 

4.6.2 A World of Choices 
If our goal is to provide a metric of comparison between discovered pattern sequences, 
what are our options? We could try to understand and mimic human behavior. For our 
specific need this scarcely seems cost effective. 
 
Basic Metric: During the course of the study a basic metric was developed. The metric is 
preliminary, but it provided a starting point for investigation. The metric is a number 
between 0 and 100 where 0 represents no similarity and 100 represents a perfect match. 
The algorithm compares two strings by comparing the second string (target string) to the 
first (source string). Penalties are assessed based on three criteria: 1) the difference in 
length between the two strings, 2) position discrepancies in the sequence of characters, 
and 3) missing characters in the target string. If at any time while calculating the penalties 
the metric falls below zero, then zero is returned. 
 

4.6.3 Related Work in String Similarity Assessment 
The following are a list of methods found from a literature search. Jun-Ichi Aoe [32] 
describes a number of string comparison metrics. The edit-distance metric measures the 
smallest number of editing transformations required to transform one string to another. 
The largest-common-subsequence algorithm is a variation of edit-differences. It seeks to 
discover the largest subsequence in common between the two strings, and then calculates 
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the edit differences for the rest of the characters. The k-mismatches metric is a 
comparison of characters between two strings of the same length. A tally is made of the 
number of positions between the two strings where the characters do not match. The k-
differences metric also calculates the number of edits required for transforming one string 
into another. The distinguishing characteristic between k-differences and edit-distance is 
that k-differences considers an update of a character as a single transformation, whereas 
edit-distance would treat an update as being two transformations, the deletion of one 
character and an addition of another. 
 
There is an interesting adaptation of the k-mismatches model by Jared Boehm [33]. Each 
matching character is worth 1.0, if the character is found either immediately before or 
after its expected location then its worth is discounted to 0.75. This model also allows for 
phonetic spelling similarity. Exact character matches are worth 1.0, but if a phonetic 
equivalent were found then the match would be less than 1.0. 
 

4.6.4 Adaptations for Our Needs 
The metrics edit-distance, k-mismatches and k-differences do not provide explicit 
measures for positional or sequencing differences and the interjection of noise; therefore, 
we decided to explore a refinement of the Basic-Metric described above. Noise may or 
may not be acceptable depending on what the noise is. Tokens representing system-state-
of-health events that are interspersed with tokens representing human-activity events may 
not be of significance when analyzing events caused by humans. Clearly the absence of 
some events over others may be significant. Finally, the ordering of tokens may or may 
not be of consequence depending on the tokens. 
 
We propose a Token Sequence Weighted metric that allows a domain expert to provide 
appropriate significance to tokens and metric components. Each token can be weighted to 
provide a penalty relative to the three characteristics, noise, absence, and sequence 
position. Additionally, the individual components of the metric, noise, absence and 
sequence position can be weighted to emphasize or de-emphasize their relative 
importance during analysis. 
 
Noise is a measure of the number of extra tokens found in the target sequence, which are 
not found in the source sequence. Absence measures the number of tokens found in the 
source sequence, which are missing in the target sequence. The noise and absence 
components are calculated by first counting the number of distinct tokens in the source 
and target sequences. For example, if we wish to compare the token sequence BBAD 
(target) to ABCA (source) then the following table will be produced: 
 

 Table 4: Token noise and absence analysis 

Token Source Count Target Count Difference 
di 

A 2 1 1 
B 1 2 -1 



34 
 

C 1 0 1 
D 0 1 -1 

 
All weights, either for individual tokens or for each of the three components are bounded 
within the range of 0.0 to 1.0. 
 

 Table 5: Penalty component weighting by token 

Token Noise Weight 
ni 

Missing Weight 
mi 

Position Weight 
pi 

A 1.0 1.0 1.0 
B 0.75 1.0 1.0 
C 1.0 0.0 1.0 
D 0.5 1.0 1.0 

 
 
I. Noisy tokens appear in the table as negative differences, and absent tokens appear 

as positive differences. Noise can be calculated by the following formula where a 
is the number of distinct tokens in the source and target sequences, di is the 
difference between the source and target count, ni is the token noise weight, and t 
is the number of tokens in the target sequence. Note that dividing the summation 
by t normalizes this component to a range between 0.0 and 1.0. 
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Our example yields a noise penalty component of 0.3125. 

 
II. From our example we would be missing one A and one C. The absence 

component of the metric is calculated in a manner similar to the noise component 
using the following formula, where s is the number of tokens in the source 
sequence, and mi is the token absence weight. Note that dividing the summation 
by s normalizes this component to a range between 0.0 and 1.0. 
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Our example yields a missing penalty component of 0.25. 

 
III. Sequence position is the relative location of the tokens as they are laid out in a 

sequence of tokens. The source string is assumed to maintain the positional 
information for the comparison. To compute the sequence position component of 
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the metric, a cost is calculated for each token in the source string as they appear in 
order from left to right, with the cost being the number of positions off from the 
expected location in the target string. The expected location is determined by 
locating the tokens in the source sequence in order as they occur, then finding 
their relative order in the target. If a token is not found in the target then the 
absent token is ignored, the expected position is incremented, and the next token 
from the source is considered. The following table is from our example, where A' 
denotes the second A found in the source token sequence. The maximum possible 
offset for any given token is computed as MAX(l-e-1,e), where l is the length of 
the target sequence and e is the expected position of the source token within the 
target sequence. The sequences are indexed starting with 0 at the first position. 

  

 Table 6: Offset calculations between ABCA and BBAD 

Token Expected 
Position 

Located at 
Position 

Offset From 
Expectation 

Maximum 
Possible Offset 

Mi 
A 0 2 2 3 
B 3 1 2 3 
C 2 Absent 0 0 
A' 3 2 1 3 

 
 

The sequence position component is calculated by the following formula where a 
is the number of tokens in the source sequence, and pi is the token's position 
weight. The variable oi is the number of positions offset from the expected 
position in the target sequence from where the token is actually found. If the 
token is missing in the target sequence then the offset is 0. The variable Mi is the 
maximum possible offset from the expected position for a token in the target 
sequence or 0 if the token is missing in the target sequence.  
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Our example yields a sequence position component of 0.5556. 

 
The overall similarity value is calculated by the formula below. The metric is scaled from 
0.0 to 1.0, with 1.0 representing a perfect match and 0.0 representing no similarity. 
 

 Table 7: Penalty component weighting 

Metric Component Weight 
noise .75 



36 
 

absence .25 
sequence position 1.0 

 
? ?? ?3/0.1 321 pwmwnw ???  

 
The similarity value from our example is 
 

1.0 - ((0.075 * 0.3125 + 0.25 * 0.25 + 1.0 * 0.5556) / 3) = 0.7158. 

4.6.5 Conclusion 
The problem of determining how closely two sequences match is highly dependent on 
individual interpretation. Trying to mimic human behavior in measuring sequence 
similarity appears to not be cost effective. The Token Sequence Weighted metric 
provides a flexible method that a user could adapt to meet current analysis needs. An 
additional benefit of the algorithm is that it can be implemented such that it can calculate 
similarity in sequences of data structures much more complex than strings of characters. 
 
In the next section, we discuss the Pattern Discovery Tool, which is a JAVA 
implementation of many of the algorithms and techniques described in this section.  We 
also present our findings which resulted from applying this tool to several domains, 
including unattended monitoring sequences (bunker event data) and robot navigation 
sensor and motion event sequences. 
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5 The Pattern Discovery Tool 
5.1 Introduction 
The Pattern Discovery tool is a prototype tool developed during the course of the Fuzzy 
Data Mining LDRD. The purpose of the tool is to allow an analyst to view token symbol 
sequences that represent sequences of events in chronological order as they were logged 
in a database. The purpose of the analysis on these event sequences is to discover patterns 
in the data. These patterns may be exact matches or somewhat fuzzy matches. The 
visualization aspect of the tool is used to display patterns in their context. The user can 
also manipulate the sequence by eliminating or replacing recurrent patterns. As the tool 
discovers patterns it provides statistical measures to provide a means for assessing the 
relative significance of the patterns. 
 

5.2 Tool Components 
The tool has several visual components. The edit area is where the token sequence is 
displayed. This area is a functioning editor that allows the tokens to be modified in an ad 
hoc mode by the user. When a new file, token sequence, is read into the tool, the new 
sequence overlays the old one in the editor window. On the right side of the tool is the 
pattern list. This is the list of patterns that the pattern discovery algorithm located within 
the token sequence. The definition of a pattern for this list is any subsequence of tokens 
up to the Pattern Size that occurs more than once in the whole sequence. During the 
pattern discovery process information for calculating statistics are gathered. The patterns 
are displayed with an initial statistic. The initial statistic is MP(ABC) which is the 
probability of finding the particular pattern at any location within the entire sequence. If a 
user selects a row in the table by clicking on it, the pattern is selected and displayed in the 
Current Pattern field. The Current Pattern field will be used in various tool functions. The 
window in the lower left portion of the screen provides information about the actions that 
have occurred. Figure 8 displays the tool’s main screen. 
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Figure 8: The main Sequence Pattern Discovery Tool screen  
 

5.3 Editing Sequences 
As described earlier the edit window is a functioning editor that allows a user to add or 
delete tokens just like regular text. All or any portion of the sequence can be selected, 
highlighted, replaced, cut or pasted. There are some additional edit capabilities that are 
located in the Edit drop down menu that are especially useful in analyzing token 
sequences. See Figure 9. Pattern Consolidation and Pattern Replacement operate on the 
selection in the Current Pattern field. Pattern Replacement simply replaces every 
occurrence of the selected pattern with another token as provided by the user. Pattern 
Consolidation replaces repeating sequences of the selected pattern with a single 
replacement token or sequence of tokens. Hold Current String allows the user to put the 
current sequence in a buffer that can be put back into the editor later in the session. 
Reanalyze Current String will run the sequence in the editor back through the pattern 
discovery process. This is necessary if edits have occurred. The sequence can also be 
written to a file by using the File drop down menu and selecting Save String to File. The 
Style drop down menu allows the text of the sequence to be displayed in different styles. 
Style changes are not persistent at this time and have limited utility. 
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Figure 9: The Edit drop down menu 
 

5.4 Pattern Statistics 
The Statistics drop down menu, Figure 10, allows the user to choose the pattern statistic 
that is displayed with each pattern in the Pattern List. When a statistic option is selected it 
is recalculated and displayed for each pattern in the list. The definition for each of these 
statistical measures was discussed previously in section 4.5.3. 
 

Figure 10: The Statistics drop down menu 

5.5 Table Sorting 
The Table Sort drop down menu, shown in Figure 11, allows the user to sort the pattern 
list table by the pattern in lexical order in either ascending or reversed order, or by the 
selected statistic in ascending or descending order. 
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Figure 11: The Sort Table drop down menu 

 

5.6 Pattern Information 
The "Info" drop down menu, Figure 12, allows the user to gain additional insight about 
patterns.  

?? Display Legend displays a dialogue that lists the definition of all the distinct 
tokens found in the sequence.  

?? The Display Pattern Legend dialogue shows the meaning of any specific pattern. 
?? Highlite Pattern will change the color of the text for each instance in the sequence 

of the selected pattern shown in the Current Pattern field. Figure 8 shows the 
pattern BCC highlighted in red. 

 

Figure 12: The Info drop down menu  
 
The other two menu items Get Regular Expression Patterns and Provide Regular 
Expression Patterns direct the system to discover other patterns that may be similar but 
not exactly like a previously detected pattern. Get Regular Expression Patterns will 
generate a set of regular expressions from the pattern that is selected and shown in the 
Current Pattern field. The matching patterns are displayed in the Patterns Like … 
window. See Figure 13. You will note that all the patterns begin and end with the 
beginning and ending tokens of the selected pattern. This is a result of the regular 
expressions that were generated. It is assumed that first and last tokens of the selected 
pattern are significant. The patterns displayed are a union of all the results from executing 
each of the regular expression permutations. In the table two numbers are also shown, 
first the count of the number of instances of the pattern in the sequence, secondly a 
compatibility measure, explained in Section 4.5.3, quantifying how close or similar the 
detected pattern is to the original. As implemented, the algorithm assumes all weights are 
one. The tool could be modified easily to accept user input for the weights.  
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Figure 13: The Patterns Like ... window  
The last item in the "Info" drop down menu is Provide Regular Expression Patterns. This 
option allows a user to enter a regular expression directly in a dialogue. See Figure 14. 
When the user requests patterns from a regular expression that he provided, the Patterns 
Like … window displays only two columns, the pattern and the count of occurrences in 
the sequence. See Figure 15. The Patterns Like … window can be used just like the 
pattern list table in the main window to select a pattern for the Current Pattern field. 
 

Figure 14: The Regular Expression Entry dialogue  
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Figure 15: The Patterns Like ... window -- user provided regular expression  
 

5.7 Pattern List Functions 
There are four functions that a user may employ when dealing with the pattern list. The 
ability to sort the list and to select a pattern for the Current Pattern fie ld has previously 
been discussed. 
 
You will note that at the top of the pattern list of Figure 8 is the Pattern Size field. The 
pattern discovery algorithm uses this field to determine what the largest pattern size will 
be. Increasing this number and pressing the Get Patterns button, at the bottom of the list, 
will invoke the discovery process to search for patterns of larger sizes in the sequence up 
to the specified size. 
 
The Filter Options button provides choices for filter the list. Pressing this button displays 
the Pattern Filter Options window, Figure 16. The filter provides a great deal of 
flexibility in which pattern are shown. 
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Figure 16: The Pattern Filter Options window 
 

5.8 Applications 

5.8.1 Unattended Monitoring Data 
We obtained a number of data sets from unattended monitoring systems fielded by the 
International Security Programs Center. Most of the data sets were taken from a 
simulated storage bunker here at Sandia. This bunker was instrumented with a door 
switch, two motion detectors, two video cameras, and 10-20 “T-1” multi-sensor item 
monitors. The T-1s can be attached to items of interest (i.e., containers) with a fiber optic 
seal and they report seal status, motion, and temperature of the item. The T-1s have two 
modes: normal and transportation. In normal mode, all of the programmed sensors are 
active. In transportation mode, the motion sensor does not report, since motion is 
expected in the transportation process. In order to provide monitoring of the item while it 
is outside the domain of a monitoring system (i.e., during transportation), the T-1s buffer 
the 100 most recent events. A buffer dump can be requested at any time the T-1 is in 
transportation mode. The T-1s also report state-of-health information including battery 
voltage. The monitored items can be logged in and out of the system. The monitoring 
system periodically polls the T-1s and records State-of-Health information. 
 
General Observations 
Our initial analysis of data from the simulated storage magazine is based on a simple 
time-flattened tokenization of the events based on the event types. The tokenization 
scheme is shown in Table 8. 

Table 8: Event tokenization scheme for initial analysis 

Event Type Token Description 
Door Open A Facility door opened 
Door Close B Facility door closed 
Motion Start C T-1 Motion started 
Occupied D Volumetric motion sensor 
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active 
Image Trigger E Camera triggered to 

capture an image 
Unoccupied F Volumetric motion sensor 

inactive 
Seal Open G Fiber optic seal on a T-1 

opened 
Seal Close H Fiber optic seal on a T-1 

closed 
T1 Login Started I Login process started 
T1 Temperature J Temperature from T-1 
T1 Into Transportation Mode K T-1 placed in 

transportation mode 
T1 Out of Transportation Mode L T-1 placed in normal 

mode 
T1 Logout Started M Logout process started 
T1 SOH Poll Failure N T-1 failed to respond to 

SOH poll request 
T1 SOH Poll-All Start O T-1 poll sequence started 
T1 SOH Poll-All Complete P T-1 poll sequence 

completed 
Scene Change Image Q Image triggered by scene 

change filter 
T1 Poll Failure S T-1 failed to respond to 

poll request 
Missing Multiple Tamper 
Events 

T The counter for case 
tamper events 
incremented by more than 
one event. 

RF Interference U Indicator that RF 
interference is present 
(disrupts communications 
to T-1s) 

No RF Interference V Clear event for previous 
event. 

T1 Login Ended W Login data received at 
DCC 

T1 Login Cancelled X Login process cancelled 
T1 Logout Cancelled Y Logout process cancelled 
T1 Logout Ended Z Logout process completed 
 
The data were tokenized and all repeating tokens were condensed to a single token of the 
same value (e.g., JJJJJJ was replaced with J). The Pattern Discovery Tool was used to 
iteratively analyze the data to see which patterns occurred frequently and how well those 
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patterns matched our understanding of the operation of the monitoring system. A typical 
screen is shown in Figure 17. 
 

 
 

Figure 17: The main Sequence Pattern Discovery Tool screen for bunker analysis 

The frequently occurring subsequences are sorted by frequency of occurrence. Note that 
there are a number of two or three token sequences that occur frequently. We will 
comment here on some of the frequent patterns.  
 
The two-token patterns include FD (or DF), CE (or EC), DE, and BA. It turns out that 
each of these represents an expected pattern in the event data. Note that DF occurs nearly 
as many times as FD (1253 vs 1384). Often, the short patterns repeat many times, making 
it difficult to decide which of the two possible combinations (e.g. FD or DF) is more 
fundamental. Our observation is that the more frequent pattern is generally the more 
fundamental pattern, but we still use domain knowledge to make the final decision. The 
FD combination represents an Unoccupied, Occupied event sequence from a volumetric 
motion sensor in the facility. The pairing is common because the motion sensor resets if it 
detects no motion for some fixed time (e.g., 30 seconds) and retriggers if there is 
additional motion. The FD pairing is more frequent because in some cases other events 
related to the motion occur after the Occupied event.  
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The CE and DE combinations indicate triggering of an image based on either a Motion 
event (from one of the T-1 item monitors) or from a volumetric motion sensor. The 
cameras in the facility are triggered to capture images when someone enters the facility, 
moves about within the facility or when the item monitors indicate an item is being 
handled in some way.  
 
The BA combination represents a Door Close, Door Open event sequence. This sequence 
is much more frequent than the AB sequence because the door generally remains open 
when the facility is occupied and there are a number of events related to the activity in 
the magazine between the open and close events.  
 
OJP is a frequently occurring three-token sequence. This sequence consists of the T-1 
SOH Poll-All Start, T1-Temperature, T1-SOH Poll-All Complete events and represents a 
SOH poll of all the T-1s in the facility. The T-1 Temperature is only event from the SOH 
message that is tokenized in this scheme. Recall that initially, repeating tokens were 
condensed to a single token, so the J in the OJP sequence actually represents many 
temperature events. The large number of repeated poll events represents a period of 
minimal activity at the facility in which the only events were the polls. 
 
Once the poll events were identified, the OJP sequence was replaced with p for poll and 
repeating poll events were condensed. In addition, the CE sequence was replaced with m 
for motion and consolidated and the DF sequence was replaced with o for occupied and 
consolidated. The result is shown below in Figure 18. The replacement and consolidation 
is useful for allowing other patterns to become more apparent in the data. 
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Figure 18: The updated main Sequence Pattern Discovery Tool screen. The screen 
has been updated to reflect token replacement and consolidation described in the 
text. 

This analysis was intended as a simple validation test to show that patterns we expected 
to find in the data (e.g., polls, image triggers, pairing of events from sensors like the 
doors and motion sensors) could be found by this approach and would appear to be 
significant based on frequency measures.  
 
It became clear at this point that there were at least three classes of events in the storage 
facility that would be worth pursuing independently: poll events, logins/logouts, and 
other activity. Each set was tokenized separately to look at more specific questions. A 
partial analysis of login data is given below.  
 
Login Process Analysis 
We next used the Pattern Discovery Tool to identify patterns in the login process. In other 
analyses of the storage facility data we had observed a number of variations in the 
expected sequence of events in these processes, and we wished to identify all of the 
variations. The login process is explained below: 

1. Initially the T-1 is in transportation mode. 
2. A bar code reader is used to indicate that a login is beginning. 
3. The bar code reader is then used to scan the T-1, the container of interest, and the 

container’s location information. 
4. The information is transmitted to the monitoring system via RF communications. 
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5. The monitoring system requests a buffer dump from the T-1 and records the 
events.  

6. The T-1 is switched out of transportation mode. 
7. Logins may be cancelled using an appropriate bar code with the bar code scanner 
 

We tokenized the data using a time-flattened scheme based on the event types associated 
with T-1s and logins. These events are listed in Table 9.  
 

Table 9: Event tokenization scheme for login process analysis 

Event Token Comment 
Case Tamper Active A Indicates T-1 case has been tampered 

with 
Case Tamper Inactive B Indicates T-1 case tamper indicator is 

in its normal state 
Missing Event C T-1 Event counter incremented 2 or 

more above previous value. Indicates 
possible missed event from a T-1 

Seal Close D Fiber optic seal on a T-1 closed 
Seal Open E Fiber optic seal on a T-1 opened 
T1 Buffer Dump End F T-1 message indicating end of a buffer 

dump 
T1 Buffer Dump Fail G DCC message indicating T-1 buffer 

dump did not occur 
T1 Buffer Dump Poll Failure H DCC message indicating T-1 did not 

respond to poll request 
T1 Buffer Dump Start I T-1 message beginning a buffer dump 
T1 Buffer Read Done J DCC signals completion of T-1 buffer 

read 
T1 Buffer Read Start K DCC requests T-1 buffer dump 
T1 Buffer Read Stop L DCC signals completion of T-1 buffer 

read 
T1 Into Transportation Mode M T-1 placed in transportation mode 
T1 Login Cancelled N Login process cancelled 
T1 Login Ended O Login data received at DCC 
T1 Login Started P Login process started 
T1 Logout Cancelled Q Logout process cancelled 
T1 Logout Ended R Logout process completed 
T1 Logout Started S Logout process started 
T1 Out of Transportation Mode T T-1 placed in normal mode 
Unknown Event U The T-1 event counter indicates at least 

one event occurred, but it is not 
possible to infer what caused the event 
from the state of the T-1 sensors. 
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The analysis produced a number of interesting observations. First, there was a large 
number of Buffer Dump End events – 14,538 of the 15434 events. Buffer Dump End 
events are recorded by the T-1 at the end of each buffer dump and are put in the buffer. If 
a T-1 is re-used many times, it is possible to have a number of Buffer Dump End events 
in a given buffer. We decided that the number of Buffer Dump End messages was not an 
important distinguishing characteristic and consolidated any repeating sequences into a 
single event.  
 
Logins normally begin with a fixed sequence of events: Login Start, Login End, Buffer 
Read Start, Buffer Dump Start. These events are tokenized as POIK. Logins normally end 
with another fixed sequence of events: Buffer Dump End, Buffer Read Stop. These 
events are tokenized as FL. In between, there may be any number of other T-1 events (M, 
A, B, U, T, D, E, C) in any order. A few example normal login sequences are shown in 
Table 10. The expected initial and final sequences are separated from the middle 
sequence to highlight the similarities and differences in the patterns. 
 

Table 10: Frequency of selected normal login patterns  

Pattern Frequency 
POIK  MABM FL  8 
POIK  MABMBM  FL  2  
POIK  MAMBAB  FL  5  
POIK  MAMB FL  6  
 
There were 67 Login Started events. Of these, the frequency and interpretation of some of 
the more common patterns are given in Table 11. The asterisk is used to indicate any 
number of T-1 events in any order. “Normal” login events do occur frequently, but there 
are a number of deviations. As shown in the second row, one common deviation is that 
there is some problem completing the buffer dump. In these event sequences, the events 
between the Buffer Read Start and the Buffer Dump Poll Failure message usually relate 
to additional attempts to read the buffer rather than actual sensor events like Seal Open or 
Seal Close. Another common deviation from the normal login sequence is canceling the 
login as shown in the third and fourth rows. 

Table 11: Frequency of selected login patterns  

Pattern Frequency Interpretation 
POIK * FL 31 Normal Login 
POI * H 5 Unable to dump buffer 
PN (login start, login 
cancelled 

8 Login Cancelled 

P * N 3 Abnormal login 
cancelled 

 
Categorizing the remaining login attempts will require more work. A large number of the 
remaining attempts show a disruption in the initial sequence – that is, one or more events 
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inserted between the P and O, the O and I, and/or the I and K. In addition, there appear to 
be occasions where logins overlapped. An example of this is given below: 

POIPKmBMFLOIKmBMFL 
where the apparently overlapping sequences are distinguished by bold and italic text and 
the “m” indicates some number of T1 Into Transportation Mode events. It is possible the 
disruption in the initial sequence is due to intermingling of events from different T-1 in 
the monitoring system. However, the apparent overlap of login sequences seems very odd 
based on our knowledge of operational procedures at this test bed. We need to go back to 
the raw data and possibly modify the tokenization scheme to clarify these issues. 
 

5.8.2 Network Intrusion Detection 
Computer security personnel tasked with the network intrusion detection problem face 
many similar issues in mining sequences of events in data.  While there is no formal data 
mining project in place, members of the Computer Security group at Sandia National 
Laboratories are working on methods to identify and detect patterns in network traffic 
that indicate network intrusion or other suspicious activity.  Commercial network 
monitoring tools do provide some assistance to this end, but they generally lack the 
flexibility needed to develop proactive early detection schemes.  Most of these tools are 
based on the use of signatures (predefined data sequences) which are scanned for in 
network traffic and data stores.  Such tools are limited to pattern detection, that is, the 
identification of patterns in data that have already been predefined, rather than pattern 
discovery. 
   
What is desired is a tool to discover new patterns that deviate from normal expected 
behavior so that intrusion attempts and other unauthorized activity can be detected, even 
though a pre-existing pattern (signature) for that activity was not previously known [34].  
For example, the Code Red worm [35] recently infected many computer systems 
throughout the world.  This worm spreads by generating permutations on a given network 
address to discover new networks to attack.  This behavior can be characterized by the 
type and quantity of network traffic that it generates.  A pattern discovery tool that is able 
to identify such anomalies in network traffic would be a valuable asset in detecting new 
generations of worms and viruses that propagate in a similar way.  With such a tool, new 
malicious activity could be detected early, before it propagates within the organization 
and causes significant damage. 
 
A short demonstration of the Pattern Discovery Tool was well received when shown to 
Computer Security personnel at Sandia.  Of particular interest was the tool’s ability to 
detect and isolate new patterns found in a user-defined token sequence.  Using a simple 
dataset, we were able to isolate an interesting set of communications between a web 
server and a firewall, using the statistical measures and filtering capabilities of the tool.  
This demonstration also led to suggestions of how to extend the tool to facilitate the 
ability to drill-down into underlying data by selecting a token or sequence of tokens.  For 
example, information fields contained in the headers of packets in network traffic are not 
always needed or used.  Unauthorized communication can take place by sending packets 
with benign payload data and encoding the real message in the unused header fields of 
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the packets.  Because the header fields are relatively small, even a modest message 
communicated in this fashion would require many packets to encode.  The Pattern 
Discovery Tool could be used to identify network traffic that follows this pattern.  Once a 
pattern is found, then a useful ability would be to examine the packet headers and data 
associated with the pattern to determine if any anomalies exist.  Going one step further, 
all occurrences of the pattern could be isolated in the tool and re-tokenized based on 
some field in the associated data, perhaps from an attached database.  Then patterns in 
this new context could be found to further process the data and gain insights into the true 
nature of the network traffic activity.  A key concept of the Pattern Discovery Tool is that 
the user has direct control of the type and amount of information displayed.   

5.8.3 Robot Time Sequences 
For the third example application, we obtained data from another project that is 
developing cognitive models for decision support systems [36]. The data consisted of 42 
data sets, each being one of six runs for seven different robots. The data sets are 
sequences that are periodic snapshots of the states of the robots as they are performing 
some task. Each record in the file represents the state at a given time. The first field is a 
time value starting at 0 and incrementing at .05 time units. The remainder of the record is 
a vector of 40 real values presumably representing the robot's state. 
 
Each row was represented as an object where equality between two similar objects is 
defined as equality of every element in the vector, thus ignoring the time field for 
equivalence. The first 8 records from the first run of robot 7 follow: 
 
0 11 17 0 0 35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
0.05 11 17.01 0 0 35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
0.1 10.999 17.02 0 0.1 35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
0.15 10.994 17.0697 0 0.1 3 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
0.2 10.994 17.0697 0 0.2 35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
0.25 10.9841 17.1187 0 0.2 35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
0.3 10.9841 17.1187 0 0.3 35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
0.35 10.9693 17.1665 0 0.3 35 0.1 0.1 0.1 1 0.1 0.1 0.1 0.1 1 0.1 1 0.1 0.1 1 1 1 1 0.1 1 1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 1 0.1 0.1 0.1 0.1 0.1 0 .1 1  

 
When the pattern discovery program was executed against a single run or data set no 
frequent patterns were found using this equivalence measure. (A frequent pattern is 
defined as a subsequence that repeats at least once.)  
 
It appears that each of the six runs for a given robot is a training run for that robot and 
that each robot is trying to accomplish the same task. Therefore, all of the 42 data sets 
were concatenated into a single data set and run through the discovery process. Enough 
equivalent patterns across the combined data set were found to indicate commonality 
between the various runs; there were enough differences to indicate the runs were unique.  
 
Table 12 summarizes the relationship between record number and run for a given robot. 
Table 13 summarizes the patterns and frequency of occurrence.  
 

  Table 12: Runs within the data set 

Record 
Start 

Record 
End 

Run 
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1 403 1 
404 806 2 
807 1209 3 
1210 1612 4 
1613 2015 5 
2016 2419 6 

 

  Table 13: Frequent patterns found across robot runs  

Pattern # Starting Records  Pattern Length 
1 1, 1613 263 
2 1, 404, 807, 1210, 1613, 2016 7 
3 1, 807, 1613 55 
4 1, 807, 1613, 2016 26 
5 232, 1844, 2247 32 
6 232, 2247 172 
7 308, 1517, 2323 75 
8 359, 1568, 1971, 2374 24 
9 359, 1971 52 
10 359, 1971, 2374 45 
11 436, 2048 193 
12 468, 871, 2080 140 
13 597, 1000, 1403, 2209 11 
14 597, 1403 105 
15 597, 1403, 2209 32 

 
Analysis of the data shows that all the runs are exactly the same for the first 7 records and 
this is the only sequence in common among all the runs. Two runs end the same. When 
there is any commonality between two or more runs they occur at the exact same point 
into the run.  
 
At this point, we do not have sufficient information to examine the significance of the 
discovered patterns, but this example was an excellent test of the ability of the pattern 
detector to discover patterns in a sequence of arbitrary object representations. 
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6 Summary and Future Work 
The data we are interested in analyzing is a mixture of analog (i.e., continuous-valued 
data) and discrete events. As a result, we explored techniques for pattern matching and 
pattern discovery in both continuous and discrete events. For pattern matching in 
continuous data, we studied the use of Dynamic Time Warping (DTW) [6][7][8][9][10] 
or Hidden Markov Models. We had a limited set of analog data to work with for this 
aspect of the project and were not able to proceed beyond the initial investigatory steps. 
However, based on our analysis of the DTW and HMM algorithms, we would focus 
future efforts on Derivative Dynamic Time Warping (DDTW).  
 
In the second half of the project, we explored techniques for pattern matching and pattern 
discovery in discrete event data. We developed a Pattern Discovery Tool based on 
adaptations of the A-priori [11] and GSP (Generalized Sequential Pattern mining) [12] 
algorithms. We then used the tool on three different application areas – unattended 
monitoring system data from a storage magazine, network intrusion detection, and 
analysis of robot training data.  
 
As described earlier, the tool is prototype; even so it demonstrates several capabilities. 
First and foremost it demonstrates the ability to discover patterns in a symbol sequence 
and provided a visual mechanism to understand those findings. Second it demonstrates 
the ability to detect subsequences that are similar to a baseline pattern and provide a 
metric of that similarity. 
 
The concepts behind the tool certainly exhibit promise and there are a number of 
enhancements suggested by individuals who have seen demonstrations of the tool, as well 
as possible uses. The tool shows promise in analyzing network intrusion data, bunker 
sensor data, and state sequences from robot test runs. Other possibilities may include 
non-temporal data such as textual patterns or genome sequences. 
 
Some possible enhancements are to allow for event tokens of more than a single token in 
length or possibly variable length token sets. Also the ability to derive patterns from a 
sequence data set rather than just a token sequence would prove very useful. This 
functionality could include the ability to drill-down into the supporting data represented 
by the token. For example a sequence of TCP/IP packet headers could be shown as either 
tokens which represent host or destination addresses, or as the list of addresses 
themselves. From any individual element in the sequence a user could display the 
underlying packet data. The analyst could direct that certain elements be hidden rather 
than edited out. From the underlying data structure different elements could be used as 
the display elements for visualization. For such a mechanism to work properly and still 
be able to find similar subsequences a method like regular expressions would need to be 
devised which operates on arbitrary data structures in preference to single letter tokens. A 
state machine engine may prove useful for achieving this. Greater use of highlighting, 
coloring and styles could be employed to highlight different types of patterns, overlaying 
patterns, etc. 
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8  Appendix:  String Similarity Poll 
 
 
 
 

Character String Similarity Poll 
 
 
To the right of each string pair below, write a number between 1 and 10 that indicates 
how similar you think the two strings are.  A 1 indicates very little similarity; while a 10 
indicates that the two strings are very similar.  Use your own metric for determining 
similarity. 
 
 
 

String Pair Similarity String Pair Similarity 
ABCD 
DEFG 

 TWEUDHSAOL 
EUDSA 

 

ABCD 
USDABCD 

 HQWEISFEISVVHQWEISFEISVV 
DOIUBCPOWIOBYDERUIVYBEWS 

 

TWEUDHSAOL 
TWEEDHESAL 

 ABCD 
DCBA 

 

HQWEISFEISVV 
HQWEISFEISVVHQWEISFEISVV 

 HIJK 
HJKI 

 

AXBXCXDXEX 
ABCDE 

 TWEUDHSAOL 
TEDSOL 

 

SGITBAFGMAT 
SGTBFGMT 

 ABCD 
ABCCD 

 

ABCD 
ABKD 

 TWEUDHSAOL 
QWEUDHSAOP 

 

ABCDE 
AABBCCDDEE 

 HQWEISFEISVV 
HQWEISFELMNOP 

 

QOUA 
ZXCM 

 TWEUDHSAOL 
HSAOLTWEUD 

 

MGITHWPA 
SGITBAFGMAT 

 AWBOCZDPE 
ABCDE 
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